Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Cell Rep Med ; 4(2): 100918, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2184477

RESUMO

With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Fragmentos Fc das Imunoglobulinas
3.
Atmospheric Chemistry and Physics ; 22(18):12207-12220, 2022.
Artigo em Inglês | ProQuest Central | ID: covidwho-2040264

RESUMO

During the COVID-19 lockdown, the dramatic reduction of anthropogenic emissions provided a unique opportunity to investigate the effects of reduced anthropogenic activity and primary emissions on atmospheric chemical processes and the consequent formation of secondary pollutants. Here, we utilize comprehensive observations to examine the response of atmospheric new particle formation (NPF) to the changes in the atmospheric chemical cocktail. We find that the main clustering process was unaffected by the drastically reduced traffic emissions, and the formation rate of 1.5 nm particles remained unaltered. However, particle survival probability was enhanced due to an increased particle growth rate (GR) during the lockdown period, explaining the enhanced NPF activity in earlier studies. For GR at 1.5–3 nm, sulfuric acid (SA) was the main contributor at high temperatures, whilst there were unaccounted contributing vapors at low temperatures. For GR at 3–7 and 7–15 nm, oxygenated organic molecules (OOMs) played a major role. Surprisingly, OOM composition and volatility were insensitive to the large change of atmospheric NOx concentration;instead the associated high particle growth rates and high OOM concentration during the lockdown period were mostly caused by the enhanced atmospheric oxidative capacity. Overall, our findings suggest a limited role of traffic emissions in NPF.

4.
Environ Sci Technol ; 56(11): 6956-6967, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1521681

RESUMO

The COVID-19 outbreak provides a "controlled experiment" to investigate the response of aerosol pollution to the reduction of anthropogenic activities. Here we explore the chemical characteristics, variations, and emission sources of organic aerosol (OA) based on the observation of air pollutants and combination of aerosol mass spectrometer (AMS) and positive matrix factorization (PMF) analysis in Beijing in early 2020. By eliminating the impacts of atmospheric boundary layer and the Spring Festival, we found that the lockdown effectively reduced cooking-related OA (COA) but influenced fossil fuel combustion OA (FFOA) very little. In contrast, both secondary OA (SOA) and O3 formation was enhanced significantly after lockdown: less-oxidized oxygenated OA (LO-OOA, 37% in OA) was probably an aged product from fossil fuel and biomass burning emission with aqueous chemistry being an important formation pathway, while more-oxidized oxygenated OA (MO-OOA, 41% in OA) was affected by regional transport of air pollutants and related with both aqueous and photochemical processes. Combining FFOA and LO-OOA, more than 50% of OA pollution was attributed to combustion activities during the whole observation period. Our findings highlight that fossil fuel/biomass combustion are still the largest sources of OA pollution, and only controlling traffic and cooking emissions cannot efficiently eliminate the heavy air pollution in winter Beijing.


Assuntos
Poluentes Atmosféricos , COVID-19 , Aerossóis/análise , Idoso , Poluentes Atmosféricos/análise , Efeitos Antropogênicos , Pequim , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Combustíveis Fósseis/análise , Humanos , Material Particulado/análise
6.
Huan Jing Ke Xue ; 42(7): 3091-3098, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: covidwho-1296233

RESUMO

The COVID-19 pandemic has endangered human health and production since 2019. As an emerging disease caused by SARS-CoV-2, its potential transmissibility via aerosols has caused heated debate. This work summarizes the current research findings on virus aerosol generation, aerodynamic properties, and environmental influencing factors on their survivability in order to elucidate coronavirus transmission via aerosols. The occurrence and distinction of SARS-CoV-2, SARS-CoV-1, and MERS-CoV in real atmospheric environments are summarized. The deficiencies of existing research and directions for necessary future research on confirming the airborne transmission mechanism of coronavirus as well as the need for multidisciplinary research are discussed.


Assuntos
COVID-19 , Pandemias , Aerossóis , Humanos , SARS-CoV-2
7.
J Hazard Mater Lett ; 2: 100027, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1233433

RESUMO

Facing the ongoing coronavirus infectious disease-2019 (COVID-19) pandemic, many studies focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in indoor environment, on solid surface or in wastewater. It remains unclear whether SARS-CoV-2 can spill over into outdoor environments and impose transmission risks to surrounding people and communities. In this study, we investigated the presence of SARS-CoV-2 by measuring viral RNA in 118 samples from outdoor environment of three hospitals in Wuhan. We detected SARS-CoV-2 in soils (205-550 copies/g), aerosols (285-1,130 copies/m3) and wastewaters (255-18,744 copies/L) in locations close to hospital departments receiving COVID-19 patients or in wastewater treatment sectors. These findings revealed a significant viral spillover in hospital outdoor environments that was possibly caused by respiratory droplets from patients or aerosolized particles from wastewater containing SARS-CoV-2. In contrast, SARS-CoV-2 was not detected in other areas or on surfaces with regular implemented disinfection. Soils may behave as viral warehouse through deposition and serve as a secondary source spreading SARS-CoV-2 for a prolonged time. For the first time, our findings demonstrate that there are high-risk areas out of expectation in hospital outdoor environments to spread SARS-CoV-2, calling for sealing of wastewater treatment unit and complete sanitation to prevent COVID-19 transmission risks.

8.
Não convencional em Inglês | WHO COVID | ID: covidwho-574612
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA